One of the most important parts of the single-phase electric motor is the start mechanism. A special type is needed for use with single-phase motors. A centrifugal switch is used to take a start winding out of the circuit once the motor has come up to within 75 percent of its run speed. The split-phase, capacitor-start, and other variations of these types all need the start mechanism to get them running.
The stator of a split-phase motor has two types of coils; one is called the run winding and the other the start winding. The run winding is made by winding the enamel-coated copper wire through the slots in the stator punchings.
The start winding is made in the same way except that the wire is smaller. Coils that form the start windings are positioned in pairs in the stator directly opposite each other and between the run windings. When you look at the end of the stator, you see alternating run windings and start windings (see Fig. 7-9).
The run windings are all connected together, so the electrical current must pass through one coil completely before it enters the next coil, and so on through all the run windings in the stator. The start windings are connected together in the same way, and the current must pass through each in turn (see Fig. 7-11).
The two wires from the run windings in the stator are connected to terminals on an insulated terminal block in one end bell where the power cord is attached to the same terminals. One wire from the start winding is tied to one of these terminals also. However, the other wire from the start winding is connected to the stationary switch mounted in the end bell. Another wire then connects this switch to the opposite terminal on the insulated block. The stationary switch does not revolve, but is placed so that the weights in the rotating portion of the switch, located on the rotor, will move outward when the motor is up to speed and open the switch to stop electrical current from passing through the start winding.