Temperature changes can cause a bimetallic strip to expand or contract in step with changes in temperature. These thermostats are designed for the control of heating and cooling in air-conditioning units, refrigeration storage rooms, greenhouses, fan coils, blast coils, and similar units. This is the type used in most homes for control of the central air conditioning and central-heating system.
Figure 14-14 shows how the bimetallic strip thermostat works. Two metals, each having a different coefficient of expansion, are welded together to form a bimetallic unit or blade. With the blade securely anchored at one end, a circuit is formed and the contact points are closed. This allows the passage of an electric current through the closed points. Because an electric current provides heat in its passage through the bimetallic blade, the metals in the blade begin to expand. However, they expand at a different rate. The metals in the blade are so arranged that the one with a greater coefficient of expansion is placed at the bottom of the unit. After a certain time, the operating temperature is reached and the contact points become separated. This disconnects the device from its power source.
After a short period, the contact blade will again become sufficiently cooled to cause the contact point to join, thus reestablishing the circuit and permitting the current again to actuate the circuit. The cycle is repeated over and over again. In this way, the bimetallic thermostat prevents the temperature from rising too high or dropping too low.